7 TeV "AFB" analyses status (TOP-13-003 and TOP-12-010) Jacob Linacre (FNAL) for UCSD/UCSB/FNAL group 9th July 2013 #### Introduction - We measure the top charge asymmetry, polarization and variables related to the spin correlation in the dilepton final state - Top and lepton charge asymmetries: $A_{lepC} = \frac{N(|\eta_{l^+}| > |\eta_{l^-}|) N(|\eta_{l^+}| < |\eta_{l^-}|)}{N(|\eta_{l^+}| > |\eta_{l^-}|) + N(|\eta_{l^+}| < |\eta_{l^-}|)}$ (and similarly for A_C) - **Top polarization** $P_n = \frac{N(\cos(\theta_l^+) > 0) N(\cos(\theta_l^+) < 0)}{N(\cos(\theta_l^+) > 0) + N(\cos(\theta_l^+) < 0)}$ - measured in the helicity basis - Two spin correlation variables: - Direct (from the correlation between the + and lepton directions) $$A_{c1c2} = \frac{N(\cos(\theta_l^+) \times \cos(\theta_l^-) > 0) - N(\cos(\theta_l^+) \times \cos(\theta_l^-) < 0)}{N(\cos(\theta_l^+) \times \cos(\theta_l^-) > 0) + N(\cos(\theta_l^+) \times \cos(\theta_l^-) < 0)}$$ - Indirect (lepton azimuthal asymmetry discriminates between correlated and uncorrelated $t\bar{t}$) note, this is a purely leptonic variable (lab frame) - $A_{\Delta\phi} = \frac{N(\Delta\phi_{l^+l^-} < \pi/2) N(\Delta\phi_{l^+l^-} > \pi/2)}{N(\Delta\phi_{l^+l^-} < \pi/2) + N(\Delta\phi_{l^+l^-} > \pi/2)}$ ## General status update - Data driven background predictions complete - Systematics complete except for PDF (which is partially complete and seems to be small) - when this is done the final results for the papers will be complete - We're currently updating the paper drafts (TOP-13-003 and TOP-12-010) ## **Background estimation** - We use raw MC to estimate the backgrounds - We make cross-checks for the DY and fake components using data-driven methods, and find reasonable agreement - DY estimate (after event selection): 45.6 ± 6.8 (stat+syst) events - consistent with MC prediction of 39.8 ± 4.9 events - Fake estimate (after event selection): 237 +294-237 (stat+syst) events - consistent with MC prediction 150 ± 8 events - We then assign appropriate background normalization systematics (100% for DY and fake, 50% for other backgrounds) - we can afford to be very conservative with the background systematic, because it is negligible for all our measurements ## Results and Systematics - Inclusive asymmetry results (in blue) and breakdown of systematics - PDF systematics are extrapolated (not all jobs complete yet) | | Asym
value | stat
uncert
(inc
unfoldin
g syst) | syst
uncert
without
pt rewt | syst
uncert
incl.
50% pt
rewt | syst
uncert
incl.
100% pt
rewt | JER | JES | b-tag SF | Trigger
SF | lepton
energy
scale | PU | mass | scale | tau | top pT
reweigh
ting | PDF | backgro
und | |---|---------------|---|--------------------------------------|---|--|-------|-------|----------|---------------|---------------------------|-------|-------|-------|-------|---------------------------|-------|----------------| | lep charge
asymmetry | 0.009 | 0.014 | 0.006 | 0.006 | 0.006 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.005 | 0.000 | 0.000 | 0.000 | 0.001 | | lep azimuthal
asymmetry
(delta phi) | 0.113 | 0.012 | 0.006 | 0.009 | 0.014 | 0.000 | 0.003 | 0.000 | 0.000 | 0.001 | 0.002 | 0.003 | 0.001 | 0.001 | 0.012 | 0.003 | 0.003 | | polarization (plus) | -0.009 | 0.025 | 0.039 | 0.039 | 0.039 | 0.000 | 0.012 | 0.001 | 0.000 | 0.001 | 0.002 | 0.035 | 0.007 | 0.001 | 0.007 | 0.009 | 0.004 | | polarization
(minus) | 0.019 | 0.023 | 0.024 | 0.024 | 0.025 | 0.000 | 0.007 | 0.001 | 0.000 | 0.001 | 0.005 | 0.019 | 0.001 | 0.001 | 0.008 | 0.008 | 0.007 | | polarization
(combined) | 0.005 | 0.019 | 0.031 | 0.031 | 0.032 | 0.000 | 0.009 | 0.001 | 0.000 | 0.001 | 0.004 | 0.027 | 0.004 | 0.001 | 0.008 | 0.008 | 0.006 | | top spin correlation | -0.020 | 0.035 | 0.021 | 0.021 | 0.023 | 0.000 | 0.011 | 0.000 | 0.000 | 0.001 | 0.002 | 0.014 | 0.009 | 0.001 | 0.010 | 0.006 | 0.001 | | top charge
asymmetry | -0.011 | 0.023 | 0.005 | 0.005 | 0.006 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000 | Also have all these systematics for the 2D unfolded results, as well as binby-bin (see plots on next slides) - Spin correlation (Δ phi) - error bars show stat uncertainty, shaded area shows systematic uncertainty - Spin correlation (direct) - error bars show stat uncertainty, shaded area shows systematic uncertainty #### Polarisation error bars show stat uncertainty, shaded area shows systematic uncertainty - Top charge asymmetry - error bars show stat uncertainty, shaded area shows systematic uncertainty - Top charge asymmetry as a function of Mttbar - error bars include stat+syst, small horizontal bars show stat-only component - Top charge asymmetry as a function of p_{T,ttbar} - error bars include stat+syst, small horizontal bars show stat-only component - Top charge asymmetry as a function of yttbar - error bars include stat+syst, small horizontal bars show stat-only component - Lepton charge asymmetry - error bars show stat uncertainty, shaded area shows systematic uncertainty - Lepton charge asymmetry as a function of Mttbar - error bars include stat+syst, small horizontal bars show stat-only component - Lepton charge asymmetry as a function of pt,ttbar - error bars include stat+syst, small horizontal bars show stat-only component - Lepton charge asymmetry as a function of yttbar - error bars include stat+syst, small horizontal bars show stat-only component # Backup #### **Event selection** - Selection designed to reject events other than ttbar - Dilepton triggers: dimuon, dielectron or electron-muon - 2 opposite sign isolated leptons: $p_T > 20$ GeV, |eta| < 2.5 (2.4) for e (μ) - \geq 2 pf jets with p_T > 30 GeV, |eta| < 2.5 - loose pfjet ID (L1FastL2L3 corrected) - $\Delta R > 0.4$ from all leptons passing analysis selection - ≥ Ib tags: CSVM - MET > 40 GeV (ee and μμ channels only) - Z veto: 76<m_{II}<106 GeV veto (for SF leptons) - m_{II}>20 GeV to veto low mass resonances (SF leptons) ## **Event Samples** - $\bullet \ \, \texttt{TTJets_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1} \;, \, 154 \; pb \\$ - $\verb| TTTo2L2Nu2B_7TeV-powheg-pythia6_Summer11-PU_S4_START42_V11-v1|, 16.2 pb | \\$ - $\qquad \qquad \text{$\tt -TT_TuneZ2_7TeV-mcatnlo/Fall11-PU_S6_START42_V14B-v1/AODSIM} \;, 154 \; pb \\$ - T_TuneZ2_tW-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 7.87 pb - T_TuneZ2_t-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 41.92 pb - $\verb| T_Tune22_s-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1|, 3.19 pb \\$ - Tbar_TuneZ2_tW-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 7.87 pb - ullet Tbar_TuneZ2_t-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, $22.65~\mathrm{pb}$ - Tbar_TuneZ2_s-channel_7TeV-madgraph_Summer11-PU_S4_START42_V11-v1, 1.44 pb - WJetsToLNu_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1,31314 pb - DYJetsToLL_TuneD6T_M-50_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 3048 pb - DYToEE_M-20_CT10_TuneZ2_7TeV-powheg-pythia_Summer11-PU_S4_START42_V11-v1 , 1666 pb - DYTOMuMu_M-20_CT10_TuneZ2_7TeV-powheg-pythia_Summer11-PU_S4_START42_V11-v1, 1666 pb - $\bullet \ \mathtt{DYToTauTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1}\ , 1666\ pb \ \mathtt{DYToTauTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1 \ \mathtt{DYToTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1 \ , 1666\ pb \ \mathtt{DYToTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v1 \ , 1666\ pb 1$ - $\bullet \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ 3319.61 \ pb \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ 3319.61 \ pb \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ 3319.61 \ pb \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1} \ , \ \ \mathtt{DYToEE_M-10To20_TuneZ2_TuneZ$ - DYTOMuMu_M-10To20_TuneZ2_7TeV-pythia6_Summer11-PU_S4_START42_V11-v1, 3319.61 pb - $\bullet \ \mathtt{DYToTauTau_M-10To20_CT10_TuneZ2_7TeV-powheg-pythia-tauola_Summer11-PU_S4_START42_V11-v2\ , \ 3319.61pb \\$ - WWJetsTo2L2Nu_TuneZ2_7TeV-madgraph-tauola_ummer11-PU_S4_START42_V11-v1, 4.783 pb - $\bullet \ \texttt{WZJetsTo2L2Q_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 1.786 \ pb} \\$ - $\verb| WZJetsTo3LNu_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 0.856~pb | with the content of th$ - ZZJetsTo2L2Nu_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 0.30 pb - ZZJetsTo2L2Q_TuneZ2_7TeV-madgraph-tauola_Summer11-PU_S4_START42_V11-v1, 1.0 pb - $\qquad \texttt{ZZJetsTo4L_TuneZ2_7TeV-madgraph-tauola/_Summer11-PU_S4_START42_V11-v1}, \ 0.076 \ pb \\$ - /Wprime_SM_400_Madgraph_v2/yanjuntu-Wprime_SM_400_Madgraph_v2-f3d3f52ad6235ba5a3ccb05162c152b9/USER - AxigluonR_2TeV_ttbar_MadGraph_sergo-AxigluonR_2TeV_ttbar_MadGraph Data: May I0th rereco + Prompt v4 + Aug05th rereco + Prompt v6 + 2011B Data (5.0 fb⁻¹) ## Triggers - Double Electron - HLT_Ele17_CaloIdL_CaloIsoVL_Ele8_CaloIdL_CaloIsoVL - HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL_Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL - HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL - Double Muon - HLT_DoubleMu7 - HLT_Mu13_Mu7 - HLT_Mu13_Mu8 - HLT_Mu17_Mu8 - Electron Muon - HLT_Mu17_Ele8_CaloIdL - HLT_Mu8_Ele17_CaloIdL - HLT_Mu17_Ele8_CaloIdT_CaloIsoVL - HLT_Mu8_Ele17_CaloIdT_CaloIsoVL ## Trigger efficiencies For the high p_T dilepton triggers, the efficiencies listed in Table 1, Table 2, Table 3 and Table 4 are applied to ee, $\mu\mu$ and $e\mu$ Monte Carlo Events. Details of the measurement of the trigger efficiencies are described in [12]. Table 1: The efficiency of the leading leg requirement for the double electron trigger, averaged over the full 2011 data. | Measurement | $0.0 \le \eta < 1.5$ | $1.5 \le \eta < 2.5$ | |---------------------|------------------------|------------------------| | $20 \le p_T \le 30$ | 0.9849 ± 0.0003 | 0.9774 ± 0.0007 | | $p_T > 30$ | 0.9928 ± 0.0001 | 0.9938 ± 0.0001 | Table 2: The efficiency of the trailing leg requirement for the double electron trigger, averaged over the full 2011 data. | Measurement | $0.0 \le \eta < 1.5$ | $1.5 \le \eta < 2.5$ | |---------------------|------------------------|------------------------| | $20 \le p_T \le 30$ | 0.9923 ± 0.0002 | 0.9953 ± 0.0003 | | $p_T > 30$ | 0.9948 ± 0.0001 | 0.9956 ± 0.0001 | Table 3: The efficiency of the leading leg requirement for the double muon trigger, averaged over the full 2011 data. | Measurement | $0.0 \le \eta < 0.8$ | $0.8 \le \eta < 1.2$ | $1.2 \le \eta < 2.1$ | $2.1 \le \eta < 2.4$ | |---------------------|------------------------|------------------------|------------------------|------------------------| | $20 \le p_T \le 30$ | 0.9648 ± 0.0007 | 0.9516 ± 0.0013 | 0.9480 ± 0.0009 | 0.8757 ± 0.0026 | | $p_T > 30$ | 0.9666 ± 0.0003 | 0.9521 ± 0.0005 | 0.9485 ± 0.0004 | 0.8772 ± 0.0012 | Table 4: The efficiency of the trailing leg requirement for the double muon trigger, averaged over the full 2011 data. | Measurement | $0.0 \le \eta < 0.8$ | $0.8 \le \eta < 1.2$ | $1.2 \le \eta < 2.1$ | $2.1 \le \eta < 2.4$ | |---------------------|------------------------|------------------------|------------------------|------------------------| | $20 \le p_T \le 30$ | 0.9655 ± 0.0007 | 0.9535 ± 0.0013 | 0.9558 ± 0.0009 | 0.9031 ± 0.0023 | | $p_T > 30$ | 0.9670 ± 0.0003 | 0.9537 ± 0.0005 | 0.9530 ± 0.0004 | 0.8992 ± 0.0011 | ## Lepton selections - Electron selection - $p_T > 20 \text{ GeV}; |\text{eta}| < 2.5$ - VBTF90 (cuts tightened to match CaloId+TrkIdVL HLT requirements) - d0 (PV) < 0.04 cm, dz (PV) < 1 cm --calculated w.r.t. Ist good DA PV - no muon $\Delta R < 0.1$ - <= I miss hits, |dist| < 0.02 cm and < 0.02, CMS AN-2009-159</pre> - Veto electrons with a supercluster in the transition region (1.44 < | eta | < 1.56) - iso/p_T < 0.15 (EB pedestal subtraction I GeV, no fastjet correction) - ecaliso/ $p_T < 0.2$ - Muon selection - $p_T > 20 \text{ GeV}; |\text{eta}| < 2.4$ - global and tracker muon - $chi^2/ndf < 10$ - nValidHits > 10 -- to be updated to frac of validHits - valid StandAloneHits > 0 - d0 (PV) < 0.02 cm, dz (PV) < 1 cm --calculated w.r.t. 1st good DA PV - $(p_T)/p_T < 0.1$ - iso/ p_T < 0.15 (no fastjet correction) ## Preselection Yields (5.0 fb⁻¹) | Sample | ee | $\mu\mu$ | $\mathrm{e}\mu$ | all | |---------------------|---------------------|---------------------|---------------------|---------------------| | ttdil | 1535.60 ± 9.82 | 1813.86 ± 10.31 | 5747.85 ± 18.69 | 9097.31 ± 23.50 | | ttotr | 39.74 ± 1.63 | 4.06 ± 0.46 | 93.09 ± 2.41 | 136.88 ± 2.94 | | wjets | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | DYee | 16.85 ± 3.28 | 0.00 ± 0.00 | 0.00 ± 0.00 | 16.85 ± 3.28 | | DYmm | 0.00 ± 0.00 | 22.96 ± 3.66 | 3.80 ± 1.60 | 26.76 ± 3.99 | | DYtautau | 13.35 ± 2.92 | 6.59 ± 1.94 | 31.22 ± 4.21 | 51.16 ± 5.48 | | VV | 8.27 ± 0.44 | 10.20 ± 0.47 | 27.90 ± 0.81 | 46.37 ± 1.03 | | tw | 72.54 ± 2.11 | 86.77 ± 2.23 | 289.37 ± 4.20 | 448.68 ± 5.20 | | Total MC | 1686.35 ± 11.10 | 1944.43 ± 11.35 | 6193.23 ± 19.84 | 9824.00 ± 25.41 | | Data | 1631.00 ± 40.39 | 1964.00 ± 44.32 | 6229.00 ± 78.92 | 9824.00 ± 99.12 | #### Uncertainties are statistical only - MC events are weighted to match trigger efficiency, b tagging efficiency, and number of vertices distribution in data - We use MC@NLO for the $t\bar{t}$ component - normalized so that total MC yield matches data - ullet ${ m t}ar{ m t} o\ell^+\ell^-$ contributes 92% of the total yield ## Data-driven BG estimates: DY - Estimate ee and $\mu\mu$ Drell-Yan using the method in CMS AN-2009-023: $R_{out/in}$ method - Use data in Z peak to predict DY yields in the signal region by propagating via the MC ratio out/in-peak - Estimate (after event selection): 45.6 ± 6.8 (stat+syst) events - consistent with MC prediction of 39.8 ± 4.9 events ## Data-driven BG estimates: Fakes • Estimate contribution from fake leptons using the datadriven tight-to-loose method described in CMS #### AN-2010/257 - lacktriangle measure tight-to-loose fake rates as a function of lepton P_{T} and eta - estimate number of fakes in data based on number of fakeable object (FOs). Weight each lepton+FO event by: - use MC to account for signal contamination in the FO sample - fake background primarily from ttbar- decaying to lepton+jets $$\epsilon_{\text{fake}} (p_{\text{T}}, \eta) = \frac{N_{\text{pass tight}} (p_{\text{T}}, \eta)}{N_{\text{loose}} (p_{\text{T}}, \eta)}$$ $$w_i = \frac{\epsilon_{\text{fake}}(p_{\text{Ti}}, \eta_i)}{1 - \epsilon_{\text{fake}}(p_{\text{Ti}}, \eta_i)}$$ - Estimate (after event selection): 237 + 294-237 (stat+syst) events - consistent with MC prediction 150 ± 8 events